Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Health Policy Manag ; 2021 Nov 07.
Article in English | MEDLINE | ID: covidwho-2279054

ABSTRACT

BACKGROUND: The aim of this research was to synthetise the existing evidence on the impact of epidemic-related lockdown measures on women and children's health in low- and lower-middle-income countries (LLMICs). METHODS: A mixed-methods systematic review was conducted of qualitative, quantitative and mixed-methods evidence. Between 1st and 10th of November 2021, seven scientific databases were searched. The inclusion criteria were that the paper provided evidence on the impact of lockdown and related measures, focused on LLMICs, addressed impacts on women and child's health, addressed epidemics from 2000-2020, was peer-reviewed, provided original evidence, and was published in English. The Joanne Briggs Institute's critical appraisal tools were used to assess the quality of the studies, and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for reporting. The evidence from the papers was grouped by type of lockdown measure and categories of impact, using a narrative data-based convergent synthesis design. RESULTS: The review process identified 46 papers meeting the inclusion criteria from 17 countries that focussed on the coronavirus disease 2019 (COVID-19) and Ebola epidemics. The evidence on the decrease of utilisation of health services showed plummeting immunisation rates and faltering use of maternal and perinatal services, which was linked to a growth of premature deaths. Impacts on the mental health of children and women were convincingly established, with lockdowns associated with surges in depression, anxiety and low life satisfaction. Vulnerability may be compounded by lockdowns, as livelihoods were disrupted, and poverty levels increased. CONCLUSION: Limitations included that searches were conducted in late-2020 as new research was being published, and that some evidence not published in English may have been excluded. Epidemic-related lockdown measures carry consequences for the health of women and children in lower-income settings. Governments will need to weigh the trade-offs of introducing such measures and consider policies to mitigate their impacts on the most vulnerable.

2.
Gels ; 9(3)2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2247946

ABSTRACT

A key element in ensuring successful immunization is the efficient delivery of vaccines. However, poor immunogenicity and adverse inflammatory immunogenic reactions make the establishment of an efficient vaccine delivery method a challenging task. The delivery of vaccines has been performed via a variety of delivery methods, including natural-polymer-based carriers that are relatively biocompatible and have low toxicity. The incorporation of adjuvants or antigens into biomaterial-based immunizations has demonstrated better immune response than formulations that just contain the antigen. This system may enable antigen-mediated immunogenicity and shelter and transport the cargo vaccine or antigen to the appropriate target organ. In this regard, this work reviews the recent applications of natural polymer composites from different sources, such as animals, plants, and microbes, in vaccine delivery systems.

3.
Front Public Health ; 8: 596944, 2020.
Article in English | MEDLINE | ID: covidwho-979060

ABSTRACT

The World Health Organization defines a zoonosis as any infection naturally transmissible from vertebrate animals to humans. The pandemic of Coronavirus disease (COVID-19) caused by SARS-CoV-2 has been classified as a zoonotic disease, however, no animal reservoir has yet been found, so this classification is premature. We propose that COVID-19 should instead be classified an "emerging infectious disease (EID) of probable animal origin." To explore if COVID-19 infection fits our proposed re-categorization vs. the contemporary definitions of zoonoses, we reviewed current evidence of infection origin and transmission routes of SARS-CoV-2 virus and described this in the context of known zoonoses, EIDs and "spill-over" events. Although the initial one hundred COVID-19 patients were presumably exposed to the virus at a seafood Market in China, and despite the fact that 33 of 585 swab samples collected from surfaces and cages in the market tested positive for SARS-CoV-2, no virus was isolated directly from animals and no animal reservoir was detected. Elsewhere, SARS-CoV-2 has been detected in animals including domesticated cats, dogs, and ferrets, as well as captive-managed mink, lions, tigers, deer, and mice confirming zooanthroponosis. Other than circumstantial evidence of zoonotic cases in mink farms in the Netherlands, no cases of natural transmission from wild or domesticated animals have been confirmed. More than 40 million human COVID-19 infections reported appear to be exclusively through human-human transmission. SARS-CoV-2 virus and COVID-19 do not meet the WHO definition of zoonoses. We suggest SARS-CoV-2 should be re-classified as an EID of probable animal origin.


Subject(s)
COVID-19/classification , Communicable Diseases, Emerging , SARS-CoV-2/classification , Zoonoses , Animals , Animals, Wild , China , Communicable Diseases, Emerging/classification , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/virology , Humans , World Health Organization , Zoonoses/classification , Zoonoses/transmission , Zoonoses/virology
4.
BMJ Glob Health ; 5(10)2020 10.
Article in English | MEDLINE | ID: covidwho-841538

ABSTRACT

Lockdown measures have been introduced worldwide to contain the transmission of COVID-19. However, the term 'lockdown' is not well-defined. Indeed, WHO's reference to 'so-called lockdown measures' indicates the absence of a clear and universally accepted definition of the term 'lockdown'. We propose a definition of 'lockdown' based on a two-by-two matrix that categorises different communicable disease measures based on whether they are compulsory or voluntary; and whether they are targeted at identifiable individuals or facilities, or whether they are applied indiscriminately to a general population or area. Using this definition, we describe the design, timing and implementation of lockdown measures in nine countries in sub-Saharan Africa: Ghana, Nigeria, South Africa, Sierra Leone, Sudan, Tanzania, Uganda, Zambia and Zimbabwe. While there were some commonalities in the implementation of lockdown across these countries, a more notable finding was the variation in the design, timing and implementation of lockdown measures. We also found that the number of reported cases is heavily dependent on the number of tests carried out, and that testing rates ranged from 2031 to 63 928 per million population up until 7 September 2020. The reported number of COVID-19 deaths per million population also varies (0.4 to 250 up until 7 September 2020), but is generally low when compared with countries in Europe and North America. While lockdown measures may have helped inhibit community transmission, the pattern and nature of the epidemic remains unclear. However, there are signs of lockdown harming health by affecting the functioning of the health system and causing social and economic disruption.


Subject(s)
Communicable Disease Control , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Africa South of the Sahara , Betacoronavirus , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/statistics & numerical data , Communicable Disease Control/methods , Communicable Disease Control/statistics & numerical data , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Humans , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , SARS-CoV-2
5.
Epidemiol Infect ; 148: e210, 2020 09 07.
Article in English | MEDLINE | ID: covidwho-745891

ABSTRACT

Global Health Security Index (GHSI) and Joint External Evaluation (JEE) are two well-known health security and related capability indices. We hypothesised that countries with higher GHSI or JEE scores would have detected their first COVID-19 case earlier, and would experience lower mortality outcome compared to countries with lower scores. We evaluated the effectiveness of GHSI and JEE in predicting countries' COVID-19 detection response times and mortality outcome (deaths/million). We used two different outcomes for the evaluation: (i) detection response time, the duration of time to the first confirmed case detection (from 31st December 2019 to 20th February 2020 when every country's first case was linked to travel from China) and (ii) mortality outcome (deaths/million) until 11th March and 1st July 2020, respectively. We interpreted the detection response time alongside previously published relative risk of the importation of COVID-19 cases from China. We performed multiple linear regression and negative binomial regression analysis to evaluate how these indices predicted the actual outcome. The two indices, GHSI and JEE were strongly correlated (r = 0.82), indicating a good agreement between them. However, both GHSI (r = 0.31) and JEE (r = 0.37) had a poor correlation with countries' COVID-19-related mortality outcome. Higher risk of importation of COVID-19 from China for a given country was negatively correlated with the time taken to detect the first case in that country (adjusted R2 = 0.63-0.66), while the GHSI and JEE had minimal predictive value. In the negative binomial regression model, countries' mortality outcome was strongly predicted by the percentage of the population aged 65 and above (incidence rate ratio (IRR): 1.10 (95% confidence interval (CI): 1.01-1.21) while overall GHSI score (IRR: 1.01 (95% CI: 0.98-1.01)) and JEE (IRR: 0.99 (95% CI: 0.96-1.02)) were not significant predictors. GHSI and JEE had lower predictive value for detection response time and mortality outcome due to COVID-19. We suggest introduction of a population healthiness parameter, to address demographic and comorbidity vulnerabilities, and reappraisal of the ranking system and methods used to obtain the index based on experience gained from this pandemic.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Global Health , Pneumonia, Viral/diagnosis , Binomial Distribution , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/mortality , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/mortality , SARS-CoV-2
6.
Epidemiol Infect ; 148: e41, 2020 02 26.
Article in English | MEDLINE | ID: covidwho-2270

ABSTRACT

Novel Coronavirus (2019-nCoV [SARS-COV-2]) was detected in humans during the last week of December 2019 at Wuhan city in China, and caused 24 554 cases in 27 countries and territories as of 5 February 2020. The objective of this study was to estimate the risk of transmission of 2019-nCoV through human passenger air flight from four major cities of China (Wuhan, Beijing, Shanghai and Guangzhou) to the passengers' destination countries. We extracted the weekly simulated passengers' end destination data for the period of 1-31 January 2020 from FLIRT, an online air travel dataset that uses information from 800 airlines to show the direct flight and passengers' end destination. We estimated a risk index of 2019-nCoV transmission based on the number of travellers to destination countries, weighted by the number of confirmed cases of the departed city reported by the World Health Organization (WHO). We ranked each country based on the risk index in four quantiles (4th quantile being the highest risk and 1st quantile being the lowest risk). During the period, 388 287 passengers were destined for 1297 airports in 168 countries or territories across the world. The risk index of 2019-nCoV among the countries had a very high correlation with the WHO-reported confirmed cases (0.97). According to our risk score classification, of the countries that reported at least one Coronavirus-infected pneumonia (COVID-19) case as of 5 February 2020, 24 countries were in the 4th quantile of the risk index, two in the 3rd quantile, one in the 2nd quantile and none in the 1st quantile. Outside China, countries with a higher risk of 2019-nCoV transmission are Thailand, Cambodia, Malaysia, Canada and the USA, all of which reported at least one case. In pan-Europe, UK, France, Russia, Germany and Italy; in North America, USA and Canada; in Oceania, Australia had high risk, all of them reported at least one case. In Africa and South America, the risk of transmission is very low with Ethiopia, South Africa, Egypt, Mauritius and Brazil showing a similar risk of transmission compared to the risk of any of the countries where at least one case is detected. The risk of transmission on 31 January 2020 was very high in neighbouring Asian countries, followed by Europe (UK, France, Russia and Germany), Oceania (Australia) and North America (USA and Canada). Increased public health response including early case recognition, isolation of identified case, contract tracing and targeted airport screening, public awareness and vigilance of health workers will help mitigate the force of further spread to naïve countries.


Subject(s)
Air Travel , Coronavirus Infections/transmission , Disease Outbreaks , Pneumonia, Viral/transmission , Risk Assessment , Africa/epidemiology , Airports , Betacoronavirus , COVID-19 , China/epidemiology , Communicable Diseases, Imported , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Humans , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Population Surveillance , SARS-CoV-2 , South America/epidemiology , Travel Medicine
SELECTION OF CITATIONS
SEARCH DETAIL